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We argue that the density dependence of the shear viscosities of dense argon at 
174, 223, and 301 K and of dense methane at 298 K can be understood on the 
basis of the mode coupling theory for hard spheres, in particular near the fluid 
solid phase transition. 

KEY WORDS: Shear viscosity; mode coupling theory; Enskog theory; hard 
spheres; argon; methane. 

1. I N T R O D U C T I O N  

Recently it was shown that the large increase of the shear viscosity t/ of 
hard-sphere fluids near the fluid-solid transition (1'2) can be understood 
using the Enskog theory and, in addition, the mode coupling theory, which 
is complementary to the Enskog theory. (3 % Here we show that the hard- 
sphere results are relevant also for the density dependence of t /o f  argon at 
the temperatures T =  174, 223, and 301 K and methane at T =  298 K, using 
equivalent hard-sphere diameters for these fluids. In fact, the fluidities 
~b = l / t / o f  very dense argon and methane depend linearly on the volume V 
and vanish when V is near the solid volume, very similar to the behavior 
of ~b of hard-sphere fluids, as predicted by kinetic theory. 

We summarize the hard-sphere kinetic theory results in Section 2, and 
discuss the argon data in Section 3 and the methane data in Section 4. We 
end with a discussion in Section 5. 
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2. HARD SPHERES 

The shear viscosity of a monatomic fluid is, for any interparticle 
potential, given by the Green-Kubo time integral, (s,9) 

, =  a lp ( t )  (1) 

where p(t) is the stress tensor autocorrelation function given by 

m2n 
p(t) = ~n T (JxyetLJxy) (2) 

Here, k~ is Boltzmann's constant, m is the mass of the particles, n = N/V 
is the number density, with N the number of particles and V the volume 
of the fluid, Jxy is the x, y component of the microscopic stress tensor, L 
is the Liouville operator, and the brackets denote the canonical equilibrium 
ensemble average at temperature T and density n. The streaming operator 
exp(tL) in Eq. (2) replaces all positions rj and vj of the particles j = 1 ..... N 
by those a time t later. For differentiable interparticle potentials, Jxy and L 
are given by Eqs. (A2) and (A12) of Appendix A, respectively. 

Then, for hard spheres (3-7) 

p(t) = pE(t) + pm~(t) (3) 

where pE(t) and pine(t) are the contributions to p(t) according to the 
Enskog and mode-coupling theories, respectively. The contribution pE(t) to 
p(t) dominates p(t) for short times (1~ (i.e., 0 ~< t~< 5tE), vanishes propor- 
tionally to e x p ( -  t/tE) for large times (i.e., t ~> 5tE), and satisfies 

qE = dt pE(t) (4) 

where qE is the Enskog value of the shear viscosity. (11) Here t E is the mean 
free time between collisions. An explicit expression for r/E is given in ref. 1 1. 

The mode coupling contribution pmc(t) to p(t) in Eq. (3) increases 
from 0 at t = 0 to a maximum value near t = 5t E and is given for large 
times, i.e., t >~ 10tE, by (3) 

mZn 1 V . f d  kV0.(k) + z j ( k ) ] t }  Pine(t) kBT2 (2~) 3 ~ e x p { - [ z i ( k )  
l, J 

(5) 

where k is a wave vector with length k = [k[ and where both i and j run 
over the five k-dependent (Enskog) extended hydrodynamic modes of the 
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fluid, i.e., the extended heat mode i or j = h, the two extended sound modes 
i or j = _+, and the two extended shear modes i or j = t/1,2. 

The five extended hydrodynamic modes (12-14) are defined as those 
five eigenvalues zi(k) and corresponding eigenfunctions Oi(k) of the 
inhomogeneous Enskog operator LE(k) which are the extensions of the 
hydrodynamic eigenmodes of Lz(k) for k ~ 0 to larger values of k. 

We note here that the inhomogeneous Enskog operator LE(k) effec- 
tively replaces the Liouville operator L in the time evolution of microscopic 
k-dependent single-particle correlation functions. (15) Explicit expressions 
for the vertex functions V,7(k ) in Eq. (5) are given in ref. 3 in terms of the 
eigenfunctions Or(k) of LE(k) and of the static equilibrium correlation 
functions of the fluid. In fact, each V~(k) arises from the coupling of the 
microscopic stress tensor Jxy to the product of the single-particle modes 
~,~(k) and Oj ( -k ) .  

To evaluate pine(t), one distinguishes two regions in the k integral on 
the right-hand side of Eq. (5), i.e., small and large k values, respectively. 

2.1. Smal l  k 

For small k the five eigenvalues zi(k) are given by (16) Zh(k ) =-aE k2 for 
the heat mode, z+ (k )=  +__ick+FE k2 for the two sound modes, and 
znl(k ) = zn2(k ) = ~IEkz/mn for the two shear modes. Here c is the speed of 
sound and aE and FE are the Enskog values of the thermal diffusivity and 
sound damping, respectively. The five corresponding eigenfunctions ~j(k) 
are, in general, linear combinations of the five microscopic quantities: the 
density, the temperature, and the three components of the microscopic 
velocity. The heat mode eigenfunction 0h(k) is, in particular, a linear com- 
bination of the microscopic density and microscopic temperature alone. 
These results are valid in the so-called hydrodynamic regime, i.e., for 
0 ~< k~r < 1, where a is the diameter of the hard spheres. 

Then, by performing the k integral on the right-hand side of Eq. (5) 
with 0 ~< ka < 1 one finds for t >~ 10tE that Pmc(t)= ~t -3/2, which is the well- 
known long-time tail in p(t), extensively studied during the past 
15 years. (9'1~ The coefficient e of the long-time tail ,,~t 3/2 in p(t) 
involves both thermodynamic and (Enskog) transport properties of the 
fluid and is given explicitly, e.g., in ref. 17. 

It has been found (y) that the time integral (with t~> 10tE) over this 
long-time tail yields contributions to the viscosity t/ [cf. Eqs. (1) and (3)] 
which amount to at most a few percent of q~ for all densities. Therefore, 
these so-called "conventional" mode coupling contributions to p(t) are far 
too small to explain the behavior of t /a t  high densities and will be neglec- 
ted in the following. 
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2.2. Large k 

For large k, i.e., k a >  1, the two extended sound mode eigenvalues 
z+_(k) and the two extended shear mode eigenvalues z,~(k) and z,~(k) are 
of the order of tE ~ for all densities. Therefore, their contributions to pr~(t) 
in Eq. (5) are negligible for all densities, since t~> 10rE. Also, the extended 
heat mode eigenvalue zh(k) is of the order of tE -~ for all ka > 1 and all 
reduced densities n* = n o  3 <0.7. This implies that all contributions to 
pmo(t) in Eq. (5) are negligible when n*<0.7,  so that r/ is in good 
approximation given by qE for all n* < 0.7. This result is consistent with the 
exact theoretical low-density expansion of t/, (18) and with molecular 
dynamics (MD) data, (ag) which also show that r/~r/E (within a few 
percent) when n* < 0.7. 

Thus, we restrict ourselves in the following to n*>~0.7 and to the 
contributions of two extended heat modes to pm~(t) in Eq. (5). 

On the basis of numerical calculations for ko- > 1 and n*/> 0.7 it has 
been shown (12-t4) that zh(k) lies far below all other eigenvalues of LE(k). In 
addition, Zh(k) shows a pronounced minimum zh(k*) at k =  k* with k*a 
near 2re, which decreases linearly with increasing density, as 

zh(k*)=4.18(1.O56--n* ) t~ ~ (6) 

where t~ = (m/4k B T) 1/2 or. To understand this result, one uses the fac t  (4'5'12) 

that there are two very different length scales in the fluid, i.e., the diameter 
cr and the mean free path between collisions l, with two corresponding time 
scales t~ and t E, respectively. Here, t~/tE= (2/rOma/l=2(rO m g(a) n*, 
with g(o-) the pair correlation function g(r) at contact. Thus, for increasing 
densities, l and tE become increasingly smaller than a and t~, respectively. 
Then, using l/~ (or tE/t~) as a small expansion parameter in the Enskog 
theory, one finds to lowest nonvanishing order in l/a that for 
1 < k~ < cr/4 (2~ 

DE k2 , , . ,  
z~~ = S - - ~  attc) (7) 

with a corresponding eigenvector O~~ which is the microscopic density 
alone, and 

1 ( k . r  kxky OSIk)] 2 
m kS(h) I (8) 

where kx and ky are the x and y components of the wavevector k, respec- 
tively. In Eq. (7), S(k) is the static structure factor, DE is the Enskog value 
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of the self-diffusion coefficient D, and d(k) is a density-independent, dimen- 
sionless function of k~r of order 1, given by 

1 
d(k) = (9) 

1 --jo(k#) + 2j2(ko" ) 

with j ,(x) the spherical Bessel function of order n. The superscript zero in 
z~~ and V~~ denotes that these quantities are equal to zh(k ) and 
Vhh(k), respectively, when I/~ is very small, i.e., for very high densities. 

We note here that the extended heat mode, which is the heat mode for 
ka < 1, has changed its character for ka > 1 to a densitylike or, rather, a 
self-diffusion-like mode, since the component of the eigenvector ~h(k) on 
the microscopic temperature has vanished then. 

Now, in Eq. (7), the minimum in z~~ at k=k*(n)  is caused by the 
first maximum in S(k) near k = k*(n), where k*(n) -~ 2~/~ depends slightly 
on n, since the location of the maximum in S(k) depends slightly on n. The 
minimum value z~~ *) of zh(k ) is therefore determined (1) by DE, which 
strongly decreases, (2) by S(k*), which strongly increases, and (3) by k .2 
and d(k*), which are virtually constant, when n increases. These dependen- 
ces together lead to the linear behavior in n* of zh(k* ) given by Eq. (6). (2~ 
The contribution to pmo(t) in Eq. (5) of two extended heat modes i=h and 
j = h with k6 > t has been called the "extended" mode coupling contribu- 
tion to p(t), (7) and will be considered here further. 

One finds from Eqs. (5), (7), and (8) that for n*>0.7  the extended 
mode coupling contribution Pmc(t) to p(t) arises mainly from the region 
3 < k a < 8  around k*a-~27r, where Zh(k) is minimal, so that 
pine(t) ~ exp[--2Zh(k*)t]  for t >/ 10tE. It appears that this extended mode 
coupling tail ~exp[ - -2zh(k*) t ]  in p(t) is much larger than the conven- 
tional tail c~t 3/2, e.g., for n* =0.884 and t-~ 15tE it is about 400 times 
~t -3/2. Also, the contribution of Pmc(t) to r/ increases with increasing den- 
sity, since zh(k*) decreases [el. Eq. (6) ], so that the tail ~ exp [ - 2zh(k*) t] 
increases. 

We discuss the results for q in terms of the fluidity ~b = 1/~/, or, rather, 
the reduced fluidity r defined by 

1 (mkB T) 1/2 
r - ( l o )  

r] ff2 

In Fig. 1 we show the results for r obtained from the Enskog theory alone 
and for r obtained from the Enskog and mode coupling theories together 
[cf. Eqs. (1)-(10)] as functions of the reduced volume 

V* = n * - I  = V/N(:r 3 (11) 
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Fig. 1. Reduced hard-sphere fluidity ~b* [cf. Eq. (10)] as a function of the reduced volume 
V* according to the Enskog theory (dashed curve), the mode coupling theory (solid curve), 
and MD simulations (squares from ref. 2 and crosses from ref. 1). The right arrow points to 
the reduced liquid volume at solidification V* = 1.06 and the left arrow points to the reduced 
solid volume at melting V* = 0.961. The solid and dashed curves are indistinguishable for 
V* > 1.4. 

One sees in Fig. 1 that ~b* = ~b* for V* > 1.4. This is due to the fact that the 
minimum zh(k*) in zh(k) is not low enough to yield noticeable contribu- 
tions to pmo(t) for t ~> 10tE, SO that r/= r/E then. Thus, the linear behavior 
~b*= ~b~ = 1 .7(V*-0 .95)  observed for V * >  1.4 is due to the Enskog theory 
alone. 

For V* < 1.4, ~b* is not linear in V* anymore and is finite down to the 
reduced liquid volume at solidification V* = 1.06 and the reduced solid 
volume at melting V*=0.961. (21) However, when the mode coupling 
contribution is included, q~* stays linear in V*, i.e., 

~b* = 1.7(V* - 0.95) (12) 

down to V* and V* (cf. Fig. 1 ). Therefore, ~b* (virtually) vanishes when V* 
approaches V* and q diverges then. This behavior is due to the vanishing 
of zh(k*) when n* --* 1.056 (or, equivalently, V* --* 0.95) [cf. Eq. (6)], since 
then the tail ,,, e x p [ -  2zh(k*) t] in Pine(t) can no longer be integrated over 
t, so that q ~ oo. One sees in Fig. 1 that ~b* obtained from hard-sphere MD 
simulations (1'2) agrees well with the theoretical mode coupling prediction 
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for ~b*. Thus, we conclude that for hard spheres the apparent divergence of 
t/ (or vanishing of ~b) can be understood on the basis of the (extended) 
mode coupling theory. 

3. A R G O N  

We have two reasons to believe that the hard-sphere mode coupling 
result for ~b* [cf. Eq. (12) and Fig. 1] is relevant also for the reduced 
fluidity ~b* of dense argon. 

First, the expression for the strength V~~ of the coupling of the 
microscopic stress tensor Jxy to two coupled microscopic normalized den- 
sity modes, as given by Eq. (8) for hard spheres, is valid also for systems 
of particles interacting through a differentiable interparticle potential, such 
as argon. This has been noted by Kirkpatrick. ~4'22> The proof (22) is 
explicitly given in the Appendix. 

Second, according to the Enskog theory, the half-width at half-height 
co~(k) of the dynamic structure factor S(k, co), observed in neutron 
scattering experiments, is almost completely given by zh(k) when ka > 1, 
i.e., then coil(k)= zh(k). ~13~ Indeed, the experimentally observed values for 
coil(k) obtained from neutron scattering experiments on S(k, co) for liquid 
argon at T =  120 K and four (high) densities (23) are in very good agreement 
with the hard-sphere zh(k) given by Eqs. (6) and (7) when a = 3.44 ~ for 
the argon atoms at T =  120 K. (13'2~ 

~/~o) k z~~ in the Thus, the two basic quantities "hh( ) and (extended) 
mode coupling theory for hard spheres appear to be relevant also for 
argon, at least for T =  120 K with o- = 3.44/k. We note that the equivalent 
hard-sphere diameter a = 3.44 A for argon at 120 K has been obtained in 
three independent ways. (13'2~ First, we determined a ~sk) as that value of a 
for which the static structure factor S(k) of (dense) argon around the first 
maximum near k a = 2 n  (23) fits best to the S(k) of a hard-sphere fluid. 
Second and third, we determined a (c) and a (s) as those values of a for 
which the liquid volume (per particle) at solidification VL and the solid 
volume (per particle) at melting Vs, respectively, coincide for argon and 
hard spheres, so that 

0 "(L)= (VL/1.06) 1/3 (13) 

and 

~r = ( Vs/0.961 )1/3 (14) 

where the Vc and Vs of argon are given in Table I (cf. refs. 24-26) 
as functions of T. Thus, one finds for argon at 120K that 
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Table I. Liquid Volume per Particle at Solidification V L, Solid Volume per 
Particle at Melting V s, Equivalent Hard-Sphere Diameters G (;) Obtained from 

V t ( i = L  ), V s ( i = S ) ,  and S ( k )  ( i = S k ) ,  and Lennard-Jones Parameters for 
Argon and Methane a 

Ar Ar Ar Ar CH 4 

T, K 120 174 223 301 298 
VL, A3 43.1 39.5 37.2 34.7 43 _+ 1 
Vs '/~3 39.2 36.9 35.2 33.2 - -  
a ~/~), A. 3.44 3.34 3.27 3.19 3.44 _+ 0.03 
a ~s), ~ 3.45 3.37 3.32 3.26 - -  
a ~s~), ~ 3.43 3.37 ~ 3.33 a 3.27 a 3.64 a 
eLj/kB, K 123.2 123.2 123.2 123.2 156.1 
O'Lj , ~k 3.36 3.36 3.36 3.36 3.70 

a Values obtained from the mean spherical approximation for S(k) of the corresponding 
Lennard-Jones fluids. 

a(sk) _~ ~(s~ ~_ a(L) = 3.44 ~ (cf. Table I), so that the three methods to obtain 
a are similar at 120 K. However,  we find that  the three methods became 
gradually less similar when T increases, since then a(L) becomes 
increasingly smaller than a (sk) ~- ~(s), which are still very close (cf. Table I). 

We remark that, in fact, a (s~) in Table I is determined using the mean 
spherical approximat ion  for S(k), (27) assuming that argon is a Lennard-  
Jones fluid with the Lennard-Jones  parameters aLj and eLj/kB given in 
Table I. However,  one finds that  this theoretical S ( k )  is in perfect agree- 
ment  with the experimental neutron scattering data  for S ( k )  at 
T =  120 K. (23) 

Now, we consider the experimental argon data  for ~b* at T =  174, 223, 
and 301 K (28-31) using a ( r ) =  a as the equivalent hard-sphere diameter a in 
Eqs. (10) and (11) (cf. Table I). We show the results for ~b* as a functions 
of V* in Fig. 2. Observe that the argon data for ~b* agree increasingly well 
with the hard-sphere mode  coupling theory result for ~b* [ the straight line 
given by Eq. (12)]  when the density increases, i.e., when V* decreases. In 
particular, the agreement is very good  at all three temperatures when 
V * <  1.35 (cf. Fig. 2). We note that for V * <  1.35, the agreement between 
the experimental ~b* and theoretical ~b* becomes increasingly less when T 
increases if one uses r; (sk~ -~ a (s) as the equivalent hard-sphere diameter of 
the argon atoms. Thus, the density dependence of the fluidity ~b of argon at 
three temperatures can be unders tood on the basis of the mode  coupling 
theory for hard spheres, in particular, if one uses a(L) as the equivalent 
hard-sphere diameter of  the argon atoms. 
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Fig. 2. Reduced argon fluidity ~b* [cf. Eq. (10)] (crosses) as a function of the reduced 
volume V* at (a) T=174K, o=3.34,~; (b) T=223 K, c~=3.27~; and (c) T=301 K, 
~r = 3.19/~. The solid curve is ~b* from hard-sphere mode-coupling theory (cf. Fig. 1). The right 
and left arrows point to V* and V* of argon, respectively. 

4. M E T H A N E  

In order to see whether the hard-sphere mode  coupling theory is rele- 
vant  also for systems more  complicated than a noble gas fluid like argon, 
we consider the recent results for ~b -- 1/q obtained for methane at 298 K J  32) 

In Fig. 3 we show the reduced methane fluidity ~b* as function of V* 
[cf. Eqs. (10) and (11)] with ~r = 3.54 A. Here ~ = 3.54 ]~ is the equivalent 
hard-sphere diameter of  methane for which the experimental ~b* fit best to 
the theoretical prediction for qt* given by Eq. (12). Observe in Fig. 3 that 
the agreement  between theory and experiment is very good  up to about  
V* = 1.5. 
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Fig. 3. Reduced methane fluidity ~b* [cf. Eq. (10)] (crosses) as a function of the reduced 
volume V* at T=298 K with a=3.54 ~. The solid curve is ~b* from hard-sphere mode- 
coupling theory (cf. Fig. 1). The arrow points to V* of methane. 

We remark that the value a = 3.54 A differs significantly from both 
a ~L~ (ref. 33) and ~sk~ for methane at this temperature (cf. Table I). Since 
we could not find reliable data for V s  of methane at 298 K, a comparison 
of a = 3.54 ~ with a (s) of methane [cf. Eq. (14)] cannot be made here. We 
conclude from Fig. 3 and Table I that the fluidity of methane at 298 K is 
very hard-sphere-like, albeit that an identification of the equivalent hard- 
sphere diameter for methane needed in the numerical comparison is still 
lacking. 

5. D I S C U S S I O N  

Using an appropriately chosen equivalent hard-sphere diameter a, we 
find that the reduced fluidity ~b*(V*) of argon at 174, 223, and 301 K and 
methane at 298K [cf. Eqs. (10) and (11)] shows, for reduced volume 
V *<  1.3, a linear behavior in V* which agrees very well with the hard- 
sphere (extended) mode coupling theory prediction for ~b*(V*) given by 
Eq. (12) (cf. Figs. 2 and 3). From this good agreement we conclude that the 
vanishing of ~b near the fluid-solid phase transition observed in real fluids 
like argon and methane might well be caused by the same basic 
physical mechanisms which cause the vanishing of ~b in a hard-sphere fluid 
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(cf. Fig. 1). In particular, we expect for monatomic fluids in general the 
presence of an "extended heat mode" which should be, in fact, a self-diffu- 
sion-like mode with an inverse decay time zh(k ) well represented by Eq. (7) 
for all k a >  1 and by Eq. (6) for its minimum value zh(k*). Thus, the 
viscosity ~/ will diverge and the fluidity ~b will vanish for monatomic fluids 
in general in a similar fashion as for hard spheres, due to the peculiar 
behavior of zh(k) near k = k*. 

We end with a few remarks and open questions. 

(a) From the good agreement in Fig. 2 it follows that a (L) 
[cf. Eq. (13)] is the equivalent hard-sphere diameter of argon most relevant 
for the comparison of the fluidities of argon and hard spheres. Why ~(c) is 
more relevant than, e.g., a (s) or ~(sk) (cf. Table I) is unclear at present. 
However, one might expect that neutron scattering experiments on argon 
for T >  120 K will yield results for the half-widths coil(k) of S(k, ~o) which 
agree better with the hard-sphere zh(k) [cf. Eqs. (6) and (7)] when one 
uses a ~c) rather than ~(s)~_ a(sk) as the equivalent hard-sphere diameter of 
argon. This is presently under investigation. 

(b) One sees in Fig. 2 that the reduced fluidity ~b*(V*) of argon is 
virtually independent of the temperature. This implies [cf. Eq. (10)] that, 
apart from a hard-sphere factor T-1/2, the temperature dependence of the 
absolute fluidity ~b(V, T) or argon is determined by the temperature 
dependence of ~ = a  (L), or, equivalently, by that of Vc [-cf. Eq. (13)]. To 
understand this result, one needs to investigate the special role of a (L) (or 
VL) for the fluidity of argon at high densities. 

(c) A more extended comparison of the fluidities of the light 
hydrocarbons CH4, C2H4, C2H6, and C3H s with those of a hard-sphere 
fluid might well reveal the special role of the equivalent hard-sphere 
diameter ~ = 3.54/~ found here for CH 4 at 298 K (cf. Fig. 3). 

(d) The (extended) mode coupling theory, when applied to the ther- 
mal conductivity 2 in a manner completely similar to that discussed in this 
paper for q, leads to a vanishing mode coupling contribution to 2 at high 
densities, for the microscopic heat current is odd in the microscopic 
velocities and therefore does not couple to two microscopic density modes 
(cf. Appendix). This result is consistent with the experimentally observed 
values of 2, which do not show any divergence near the fluid-solid 
transition.(31: 34) The (extended) mode coupling theory applied to the self- 
diffusion coefficient D and the bulk viscosity ( predicts that D vanishes (12) 
and that ( diverges at very high densities. A comparison of these results 
with the (scarce) experimental data for D and ( has not been made yet. 
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A P P E N D I X  

Here we derive Eq. (8) for v(o) for a monatomic fluid of N particles - -  hh 
interacting through an arbitrary, but differentiable, interparticle potential 
~b(r), which is spherically symmetric. 

The strength of the coupling of the microscopic stress tensor Jxy to the 
normalized microscopic density modes 0h(k) is given by ~4) 

where 

and 

V(h~ = { (J~y Oh(k) Oh( -- k) } }2 

Vj, xl)j ,  y - - - -  J x Y - - N ~  j = l  2ml=1 axjl Y~I 
l =/= j 

(A1) 

(A2) 

1 
~h(k)-- ~ - ~  n(k) (A3) 

Here Vj, x and vj, y are the x and y components of v j, respectively, xjt and Y jr 
are the x and y components of r j l = r j - r  l, respectively, n(k) is the (unnor- 
malized) microscopic density given by 

1 U 
n(k )=  ~ j-~l e x p ( - i k "  rj) (A4) 

and S(k) is the static structure factor, given by 

S(k) = (n(k)* n(k) )  (A5) 

so that 0h(k) is normalized to 1 for all k, i.e., 

(0h(k)* 0h(k)} = 1 (A6) 

Thus, from Eqs. (A1) and (A3) one obtains 

F 1 _ k ) } ]  2 (A7) V(h~ = [_S-~(J~yn(k) n( 

Next we use that Jxy is the q = 0  limit of the wavevector (q)-dependent 
microscopic stress tensor rxy(q), i.e., 

Jxy = lim rxy(q) (AS) 
q ~ 0  
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where q is in the y direction and 

1 i { ~r 
Y ( q ) = ~ j = l  ~ {vJ'xvJ'Y+~mq ,=1- axj, "C x 

l r  

x [exp(iq �9 rj,) - 1 ] } exp( - iq" rj) (A9) 

with q = ]q[. Thus, 

o 1 . V~h) (k )=s -~ lm ~ [ (Zxy (q )n ( k l n ( - k -q ) ) ]  2 (A10) 

where we have replaced n ( - k )  in Eq. (A7) by n ( - k - q )  in Eq. (A10) to 
obey momentum conservation, i.e., the sum of the wavevectors in the 
average on the right-hand side of Eq. (A10) must vanish. Then we use that 

Lux( q) = -iqzxy(q) (A11 ) 

where L is the Louville operator of the fluid, i.e., 

~ I ~ 1 ~ c3~b(rsk)61 L = Vg" �9 (A12) 
s=J Ors m l=1 Orst 

l&j 

and ux(q) is the x component of the microscopic velocity u(q) given by 

N 
u(q)= 1 ~ v j e x p ( - i q ' r j )  (A13) 

~ j = l  

Therefore [cf. Eqs. (AI0) and (A l l ) ]  

- 1  1 
V~~ = o~,_,2 lira {( [Lux(q)] n ( k ) n ( - k - q ) ) ) }  2 (A14) 

S ( k )  q --+0 -~  

Then, using that L is an anti-Hermitian differential operator, one has 

o - 1  . 1 
V~h)(k) = S-~-~ Jlmo ~5 [ (ux(q)n(-k -q) Ln(k)) 

+ (Ux(q) n(k) Ln( -k  _ q ) ) ] 2  (A15) 

Finally [cf. Eqs. (A4), (A5), (At2), and (A13)] 

Ln(k') = - i k ' .  u(k') (A16) 
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a n d  

de Schepper e t  al.  

1 kBTo~,S(lk, q,i ) (A17) (u=(q') u,(k')n(-k'-q')) =xf  ~ m 

for any two wavevectors k' and q'. Thus, with q in the y direction, 

1 {k,  Tkx'] 2 1 
V ~ ~  q-o~lim [S(Ik-ql) -S(k)]  2 (A18) 

so that 

%[k.r  slk)12 
V~~ m kS(k) - ~  J (a19) 

which is the final result, used in Eq. (8) of the text. 
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